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The equations of special-relativistic, classical, ideal fluids interacting self-consistently with a Yang-Mills field ate obtain- 
ed through the cold plasma limit from the relativistic Yang-Mills Vlasov kinetic equations. For each system of equations 
the underlying hamiltonian structure is found. 

Introduction. Special-relativistic fluid effects tend to be important in astrophysics. For example, the core of a 
neutron star is sometimes postulated to be a "quark soup", i.e., a classical fluid composed of quarks and gluons, at 
relativistically high temperatures. Reality, of course, can be much more complicated than this, with, for example, 
effects of superfluid phase transitions, particle creation, and general relativity coming into play. Here, though, we 
address only the problem of the description of an ideal, classical fluid, including the effects of special relativity and 
Yang-Mills internal degrees of freedom. Previously, chromohydrodynamics (CHD), that is, the theory of ideal 
fluids with gauge internal degrees of freedom interacting self-consistently with a Yang-Mills field, has been derived 
and given a hamiltonian description for the nonrelativistic case in refs. [ 1,2]. Moreover, these nonrelativistic CHD 
equations, together with their hamiltonian structure were obtained by taking the cold plasma limit of the corre- 
sponding equations and hamiltonian structure for a Yang-Mills Vlasov plasma (YMV) [ 1,2]. The YMV equations for 
a relativistic plasma are formulated in refs. [3,4]. In this paper, we formulate the relativistic CHD equations using 
the cold plasma limit of the relativistic YMV equations and find the hamiltonian structure for each of these two 
relativistic systems. In both instances, we observe a remarkable phenomenon which suggests what might be called 
the principle ofhamil tonian form-invariance under relativisation: in passing to the relativistic descriptions, the 
hamiltonian structures remain unchanged, while the physical variables and the hamiltonian functionals of the corre- 
sponding relativistic systems deform regularly (in the parameter c -2)  from their nonrelativistic forms. This phenom- 
enon was previously observed in ref. [5] for the Maxwell-Vlasov equations, and in ref. [6] for relativistic adia- 
batic fluids. 

The plan of this paper is as follows. First, we cast relativistic YMV into hamiltonian form. Upon passing to the 
cold plasma limit and introducing thermodynamic internal energy, we derive the relativistic CHD equations and 
their associated hamiltonian structure. 

Yang-Mills Vlasov plasma. In this section, we show that the noncanonical Poisson bracket already given in refs. 
] 1,2] produces the correct relativistic YMV equations (in thelaboratory frame) from the relativistic single-particle 
hamiltonian. The single-particle classical phase space for YMV in a fixed, laboratory frame consists o f  the particle's 
spatial coordinatesx, canonically conjugate moment components p, and gauge charge g. The single-particle 
Poisson bracket between functions of x, p, and g is taken to be [1,2] 
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{ J, K) = --((M/ap) . (aK/ax) - (aJ/ax) . (aK/ap) + <g, [aJ/ag, aK/ag] >). (1) 

This is the direct sum of a canonical bracket in p, x, with the Lie algebraic cff*.bracket. Here the charge g belongs 
to the dual eft* of the gauge-symmetry Lie algebra eft. The relativistic single-particle hamiltonian (routhian) is 

H 1 = c2 [(Ip - (g, a)12/c 2 +m2) 1/2 - m] - (g, A0) , (2) 

where Au = (A0, A) is the Yang-Mills vector potential taking values in eft, m the particle mass, and c the speed of 
light. Greek indices #, v, o, a,/3 run from 0 to n (= 3), Latin indices i, j, k from 1 to n and a, b, r from 1 to N = dim 
q~ ; summation over repeated indices is implied; ad: qJ ~ End cff denotes multiplication in cff: ad(y)z = [y, z] ; 
a map qff ~ qJ*, cff ~ y ~ *y E eft* is defined by the rule (y*, z) = (y, z) where ( , ) is an invariant symmetric 
nondegenerate form on cff (e.g., the Killing form, for QJ semi-simple); tr b are the structure constants of QJ in a 
basis with elements e b : g = ga ea, where e a are the elements of the dual basis. 

From the hamiltonian (2) one may derive 

= <g, e i > -  <g,  jsji> , (3) 

which is the Yang-Mills analogue of the Lorentz force; the fields E i and Bi] are defined in terms of potentials A 
and A 0 by 

E i = - a a i / a t  + A o , i -  [ai, a 0 ] ,  B i i = A i d -  ALi + [Ai,A/] . (4) 

~,=ad(aH1/ag)*g = ad(Ao +Yc'A)*g (in components: ~a = ta (A ob +~¢.Ab)gr) " (5) 

Eqs. (3) and (5) are Wong's equations [7] for the motion of a gauge-charged particle in a Yang-Mills field. 
The Poisson bracket for YMV in single-particle phase space is defined for any two functionals ~ If] and cK [.f] 

depending on the distribution function f on phase space to be 

( ~ [ f ] ,  cK [f]}/= f f {6~/S f ,  6cK/Sf}l dnx dnp dNg. (6) 

The full hamiltonian structure of relativistic YMV is exactly the same as the nonrelativistic one derived in refs. [ 1, 
2], namely, the direct sum of (6) with a canonical structure for the fields *E and A: 

af/at= {gg , f } f (=-{89g/s[ , , [ } l ) ,  aA/a t=-69g/8  *E, a ' E / a t =  89g/SA . (7) 

The hamiltonian 9g in (7) is 

9t = f H i f d n x  dnp dNg + f ( (*E i ,  Ao, i - [Ai, A0])+ ~ i, ~< Bii, , I<*E El)+ I * gi/))dn x (8) 

where A 0 in this section is considered as a parameter. A proper harniltonian description has A 0 = 0. Transforming 
eqs. (7a) to kinetic momentum p - (g, A) produces the relativistic YMV equations in refs. [3,4], when written in 
the laboratory frame. 

Remark: when Qff is abelian, this hamiltonian structure has a counterpart in the space of variables where the 
vector potential A is replaced by the magnetic field strength Bip The latter structure was derived in ref. [5]. 

As in refs. [1,2], passing to the cold plasma limit by considering only the first moments p = (1), M = (p), G 
= (g), where ( • ) = f .  f dnp dNg, one obtains the barotropic CHD equations. Adding entropy dependence to the 
internal energy, we get the full CHD system, treated in the text section. 

CHD. The relativistic CHD equations express conservation of energy-momentum and particle number, combin- 
ed with the Yang-Mills field equations, 

a,  TUV=0, au(pouU)=o ' DuF~V=ju ' Dio~uv]=O,  (9) 

where we use the following additional notation: We work in a fiat space-time with coordinates x u, where x 0 
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= ct is the real time coordinate. The signature of  the metric tensorgno is n - 1 (= 2). Derivatives are denoted a u 
= a/bxU. The energy momentum tensor is TUV, u u is the particle velocity vector, P0 is proper density in the frame 
of a moving fluid element, FUv is the Yang-Mills  field strength tensor,/" v = Gnu v is current density, where G O is 
the gauge charge density in the proper frame; FUr is the tensor dual to FUU,Fuv = ~euvnoFnO, D u is the covariant 
derivative, D u = a u - ad(Au). In terms of  A, ad(Fvu ) = [Du, D j .  

The expression for ene rgy -momen tum is TUV = TU~T + TUv~, where TUM~T = PoWUUU v + pogUV and Tvu~ 
= -~gUU(*Fna , FnO) + {*FUn, FU n), where w = 1 + (e'0"+ P0/'O'0)c-2, P0 is'pr'essure, and e 0 is specific internal 
energy, all evaluated in the proper frame of  the fluid. 

In the nonrelativistic limit, eqs. (9) reduce to the CHD equations given in refs. [ 1,2]. As a consequence of  the 
ant isymmetry of FUr and eq. (9c), charge is conserved: D r / v  = O. 

To treat a covariant system by the hamiltonian formalism, one rewrites the covariant equations in a fixed frame 
of ref. [8]. For our CHD system we choose the laboratory frame (to get the eulerian description). With uU = 7(1, 
oi/c), and 7 = (1 - 02/C2) -1/2, eqs. (9) become 

OtNi= -a j (NivJ  + f / p o )  + G(Ei + Bi/oJ) , atp = -a i (po i )  , ~t~7= -rl, io i , (10) 

Dt(*Ei ) = - G o  i + *(DkBki) ,  DtAi  = - E i ,  D~G = -D~(Goi ) ,  (11')  

where D* = V+ ad(A)*, D~ = b/~t ÷ ad(A0)*, B ki = - F  ki, N, P, r/, and G are, respectively, the hydrodynamic mo- 
mentum density, mass density, specific entropy, and gauge charge density in the laboratory frame. The velocity of  
the fluid relative to the laboratory frame is denoted by o. The laboratory frame quantities are related to the proper 
frame quantities by/9 = 7P0, N = 72p0ow, 7/= r/0, G = 7G 0 . Eqs. (10), (11')  preserve Gauss' law (the zero-compo- 
nent of  (9c)] 

D;(*E i) + G = 0 .  (12) 

To make eqs. (10), (11') into a dynamical system we choose radiation gauge A 0 = 0. Then eqs. (11 ' )  become 

bt*Ei = - G o  i + *(DkBki ) ,  btA i = - E  i , atG = - D ~ ( G o i ) .  (11) 

The main result o f  this section is that the relativistic equations (10), (11) are hamiltonian with the following 
Poisson bracket 

" " ° ° ' " t  (I,J)=-fd"x aip+~nni+K~/ (Nia/+aiN/-<G, Bi/> )-  6 , E i / ] 6 N  i + ;G  , , 

t (/o_., _ . . / o , - . ; I + -  °i ,i} 
+ G, 6G,g-ffJ]+~-~/ ,Dig-d)+oo/T-pp-n.i-g-~n+ 6 * E J / I  6Ai 6 * E  i "~A i ' 

and hamiltonian 

H= f TO0 dnx = f dnx (c2[(INI2/c2 + (pw)2)  1[2 - P] - Po + ~ ( * E i , E i ) +  ~{ *Bij ,Bi/)  " (14) 

This result follows immediately by substituting the identities 

6H/6N= v ,  6H/6p = c2(w7 -1 - 1 ) ,  6H/&I = e2pOW, n - P,n , 

 H/8 *Ei= Ei , *(DkBkg   I/SG= O , 

into the equations F t = {H,/7) for F E {N, p, r/, G, *E, A} and using (13). The Poisson bracket (13) satisfies the 
Jacobi identity because this bracket is identical to the bracket for nonrelativistic CHD derived in refs. [1,2] ; except 
instead of  the total momentum density M in refs. [ 1,2] we use here the hydrodynamic momentum density N = 
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M - (G, A ). Notice that when c -2  --~ 0, the motion equations (10), (11), the hamiltonian (14), and the functional 
derivatives (15) all tend to their nonrelativistic counterparts. Thus, relativistic CHD is a regular, structure preserving 
deformation (with parameter c - 2 )  of  nonrelativistic CHD. 

For multiple gauge charge species (flavors) all variables except *E and A acquire species labels, and one sums 
over species in Gauss' law (12), in the Poisson bracket (13), and in the harniltonian (14), The resulting relativistic 
multi-species CHD system has a number o f  limiting cases. In the abelian, single-species case, eqs. (9) reduce to the 
equations for a classical relativistic charged fluid (ref. [9], ch. 3). In the abefian nonrelativistic case, one recovers 
the hamiltonian structure for the multi fluid plasma system [10,11] which was found earlier [12] for the single- 
species pressureless relativistic fluid. Notice that in the abelian case, the multi-species version of  the Poisson bracket 
(13) written in terms of  the vector potential A, has a counterpart in terms of  the field strength Bi/ .  This correlation 
was observed in the nonrelativistic case in ref. [ 11 ]. Because the relativistic and nonrelativistic A-brackets are the 
same, this correlation persists in the relativistic case, and since the hamiltonian depends upon A only through B ii, 
the resulting hamiltonian description is gauge-invariant. 

As we saw above, the preservation of  hamiltonian structure when passing from nonrelativistic to relativistic 
description occurs for CHD and YMV. This was also observed for the case of  relativistic fluids in ref. [6] and for 
the MaxweU-Vlasov system in ref. [5], where the relativistic Poisson bracket (in the B/Lspace) was found to be of  
the same form as the nonrelativistic one [ 13]. The observation that various hamiltonian theories have the same 
Poisson bracket in either nonrelativistic or relativistic variables in a fixed frame, strongly indicates that there exists 
an underlying principle of  form-invariance upon relativisation of  the hamiltonian structures of  fluids and plasmas. 

This work was supported in part by NSF and DOE. 
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